
Building CSPs from semigroups

Thomas Quinn-Gregson
TU Dresden

Funded by the DFG (German Research Association)



The finite case



A rough definition

A constraint satisfaction problem (Montanari, 1974) consists of:
1 a finite list of variables V ,
2 a domain of possible values A,
3 a set of constraints on those variables C.

Problem: Can we assign values to all the variables so that all the
constraints are satisfied?

Example (Graph 3-colouring)

Let G be a finite graph. Each vertex can be coloured either red, green or
blue. Problem: can we colour G such that no two adjacent variables have
the same colour?

Example (N-Queen)

Place N queens on an N ×N chess board so that no queen can attack any
other queen.



Constraint language

Much attention has been paid to the case where the constraints arise from
fixed relations on a finite domain.

Definition

Given a finite relational structure (A; Γ), we define CSP(A; Γ), or simply
CSP(Γ), to be the CSP with:

Instance: I = (V ,A, C) in which each constraint is simply a relation
from Γ.

Question: Does I have a solution?

Example

Let G = (G ;E ) be a finite simple graph. Then an instance of CSP(G)
could be (x , y), (y , z), (z , x) ∈ E .

Example

Let P = (P;≤,U) be a finite poset with ternary relation U. Then an
instance of CSP(P) could be x ≤ y , z ≤ y , x ≤ z ,U(x , y , t),U(t, s, z)....



Examples

Equivalently, CSP(A) is defined as:

Definition

Given a finite relational structure A = (A; Γ), we define CSP(A) to be the
CSP with:

Instance: A finite structure S of the same relational signature of A.

Question: Does S map homomorphically to A?

Example

Graph 3-colouring can be considered as CSP(A; Γ) where A = {R,B,G}
has the single binary relation Γ = {(x , y) ∈ A : x 6= y}. Or, equivalently,
considered as CSP(K3), where K3 is the complete graph on 3 vertices.



Computational Complexity

Main question: What is the computational complexity of CSP(A)?

Definition
1 P: the class of all problems solved in polynomial time. Its members

are called tractable.

2 NP: the class of problems solvable in nondeterministic polynomial
time.

3 NP-hard: the class of problems which at least as hard as the hardest
problems in NP.

4 NP-complete: the class of problems which are NP and NP-hard (the
“hardest problems in NP”).

We assume P 6= NP.

Theorem (Ladner, 1975)

If P 6= NP then there are problems in NP \ P that are not NP-complete.



Dichotomy Theorem (!)

As A is finite, CSP(A) is always in NP.

Example

Graph n-colouring is NP-complete if n > 2, and tractable otherwise.
Equivalently, CSP(Kn) is NP-complete when n > 2, and tractable
otherwise.

Example (Hell and Nes̆et̆ri, 90’)

Let G be a finite undirected graph. Then CSP(G ) is either tractable (if
bipartite) or NP-complete.

Theorem (Dichotomy Theorem (Bulatov, Zhuk 17’))

CSP(A) is either tractable or is NP-complete.



Polymorphisms: a motivation to haunt Scott

Question: How does the structure A effect the complexity of CSP(A)?

1. Model theoretic: the ability to “construct” (via certain model theoretic
voodoo) K3 implies NP-hard. Else, it was correctly conjectured to be
tractable.

2. Algebraic: The algebraic counterpart is polymorphisms of our
structure (in the same sense that the algebraic counterpart to definablity is
automorphisms). 3. Topological: outside this talk



Polymorphisms

Definition

An n-ary operation f : An → A preserves an m-ary relation ρ ⊆ Am if

a11 a12 · · · a1m ∈ ρ
a21 a22 · · · a2m ∈ ρ

...
... · · ·

...
an1 a12 · · · a1m ∈ ρ
↓f ↓f · · · ↓f
X X · · · X ∈ ρ

Definition

Let (A; Γ) be a relational structure. An n-ary operation f : An → A is
called a polymorphism of A if it preserves every relation in Γ.
That is, if f is a homomorphism from An to A.
The set of all polymorphisms is denoted Pol(A).



A simple example

Example

Consider (A; 6=) and f : An → A. Then f ∈ Pol(A) if and only if

x1 6= y1, . . . , xn 6= yn ⇒ f (x1, . . . , xn) 6= f (y1, . . . , yn)

or, equivalently, if

f (x1, . . . , xn) = f (y1, . . . , yn)⇒ xi = yi for some 1 ≤ i ≤ n.

We call such a function injective in one component.



A Galois connection

Let F be a set of operations on a set A. We denote Inv(F ) to be the set
of relations on A that are invariant under each operation of F .

Lemma

Let A = (A; Γ) and B = (A; Ω) be relational structures with the same
domain A. Then:

1 if Pol(A) ⊆ Pol(B) then CSP(B) is at most as hard as CSP(A).

2 CSP(A) and CSP(Inv(Pol(A))) are equally hard.



Preexisting CSP-semigroup theory pairings

Given an algebraic structure S = (S ,F ) we define
CSP(S) = CSP(Inv(F )).
Given the previous lemma, we may only study CSPs of this form.

Theorem (Bulatov, Jeavons, Volkov, 02’)

Let S be a finite semigroup. Then CSP(S) is tractable if and only if S is a
block group, that is, if it does not contain a 2 element left or right zero
subsemigroup.

A few other papers on semigroups:

1. “Tractable clones of polynomials over semigroups” by Dalmau,
Gavaldà, Tesson, and Thérien (2005).
2. “Systems of Equations over Finite Semigroups...” by Kl̀ıma, Larose and
Tesson (2006).



Polymorphisms give tractability

Question: Given a class of structures, when exactly do we have
tractability?
Better question: Is the existence of certain types of polymorphisms
neccessary for tractability?

Definition

Let f be a 6-ary polymorphism on a relational structure A such that

f (x , y , x , z , y , z) = f (y , x , z , x , z , y),

then f is called a Siggers term.

Siggers showed (2010) that the lack of a Siggers polymorphism implies
NP-completeness.

Theorem (Bulatov, Zhuk 17’)

CSP(A) is tractable if and only if Pol(A) contains a Siggers term.
Otherwise, CSP(A) is NP-complete.



The countably infinite case



Infinite domains

Many interesting CSPs cannot be formulated by a finite domain.

Example

Consider the acyclic digraph problem. That is, given a finite digraph, is it
acyclic? This is equivalent to CSP(Q;<), but cannot be written as a CSP
with a finite template. Note: the problem is tractable.

Infinite domains allow methods not possible in the finite case:

Example

CSP(N; 6=) is tractable (a far cry from the finite case!). The proof
transfers an instance into a graph, and uses graph reachability, which is
doable in polynomial time.



Problems

Many of the results from the finite case do not transfer to the infinite case:

There exists problems which are undecidable.

If a pair of finite relational structures are homomorphically equivalent,
then their CSP’s are equivalent - not true for infinite structures.

pp-definablity, extentions by singletons, existance of certain
polymorphisms....



A better template: ω-categorical

The structures (Q;<) and (N; 6=) have many nice model theoretic
properties, including ω-categoricity.

Definition

A structure A is called ω-categorical if it can be uniquely defined, up to
isomorphism, by its first order properties. Equivalently: if Aut(A) is
oligomorphic.

Example

The infinite left zero semigroup L is ω-categorical, and is defined by the
property (∀x)(∀y) xy = x (and sentences saying L is infinite). Rectangular
bands and null semigroups are also ω-categorical.

By considering ω-categorical structures, we can get back many of the
other links from the finite case, including homomorphic equivalence
implying equivalent CSPs (Bodirsky, 08’).



Pseudo-Siggers

The non-existance of a Siggers term no longer implies NP-completeness
(e.g. (N; 6=)).

Definition

A 6-ary operation f ∈Pol(A) is called a pseudo-Siggers term if

αf (x , y , x , z , y , z) = βf (y , x , z , x , z , y)

for some endomorphisms α, β of A.

Lemma (Barto, Pinsker, 16’)

If A is ω-categorical and Pol(A) does not contain a pseudo-Siggers term,
then CSP(A) is NP-hard.

However, the existance of a pseudo-Siggers term has been shown to be
insufficient for tractability. Conjectured true if more conditions are added
(reduct of a finitely bounded homogeneous structure).



The big conjecture

Conjecture (Dichotomy Conjecture for ω-categorical strucutres)

The class of ω-categorical structures has CSP dichotomy. That is, CSP(A)
is either tractable or NP-hard.



Building examples

Let (S , ·S) be an ω-categorical semigroup. Then we have a few possible
CSPs:

1. CSP(Inv(·S)). Problem: not ω-categorical.
2. CSP(S ;R) where R = {(x , y , z) : xy = z}. Problem: trivial.
3. CSP(S ;R,¬R). Benifits: non-trivial, ω-categorical + other pleasing

model theoretic properties- hence known methods for proving
complexity in some cases.

We denote the relational structure (S ;R,¬R) by S̄ .

Lemma (TQG)

Let f ∈ Pol(S̄) of arity n. Then f is a semigroup morphism from Sn to S
such that

f (x1, . . . , xn) = f (y1, . . . , yn)⇒ xi = yi for some 1 ≤ i ≤ n,

where xk ∈ SS and yk ∈ S (1 ≤ k ≤ n). Hence if S is regular, then f is
injective in one component.



Building examples

Corollary

Let S be a finite semigroup. Then CSP(S̄) is tractable if and only if S is
either trivial, |S | = 2 and non-semilattice, or S is null.

Proof.

Let f be a Siggers term. Then for any x , y , z ∈ SS ,

f (x , y , x , z , y , z) = f (y , x , z , x , z , y)

forcing either x = y , x = z or y = z by our previous lemma. Hence
|SS | ≤ 2.



Building examples

Example

If L is left zero, then an instance of CSP(L̄) is built from xy = z and
xy 6= z , and thus from x = z and x 6= z .

Hence CSP(L̄) is equivalent to CSP(|L|, 6=), and is thus tractable only
when |L| = 1, 2, or ℵ0.

1 If G is an ω-categorical group, when is CSP(G ) tractable?
(motivating example). Known when we have pseudo-Siggers terms.

2 If S is ω-categorical and CSP(S̄) is tractable, is S bi-embeddable with
a homogeneous semigroup? (that is, there exists a homogeneous
semigroup T and embeddings θ : S → T and ψ : T → S .

3 Does CSP(S) fit with the ω-categorical Dichotomy conjecture?



A wild conjecture

Let Ln (Rn) denote the left (right) zero semigroup with n elements.

Conjecture (TQG)

Let S = Ln × Rm be a rectangular band for some n,m ∈ N ∪ {ω}. Then
CSP(S̄) is tractable if and only if S is equal to either

Finite: trivial, L2 or R2,

Ln × Rω for n = 1, 2 or ω,

Lω × Rm for m = 1, 2.

Otherwise, S̄ is NP-hard.

In fact this conjecture most likely gives all tractable bands with finite
structure semilattice.


